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PDE-based multiphysics applications

Many PDE-based applications require high-fidelity simulation of
multi-scale / multi-physics phenomena

Combustion

Astrophysics

Subsurface flow

Climate

Fusion

Fission

Characteristic of these problem areas is that they couple a number of
different physical processes across a range of length and time scales

How can we exploit the structure of these problems in developing
simulation methodology

What are the characteristics of these type of problems

What might the algorithms look like

How can we implement them

How can effectively utilize modern parallel architectures
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A combustion example

Spatial Scales

Domain: ≈ 10 cm

Flame thickness: δT ≈ 1 mm

Integral scale: `t ≈ 2 − 6 mm

Temporal Scales

Flame speed O(102) cm/s

Mean Flow: O(103) cm/s

Acoustic Speed: O(105) cm/s

Fast chemical time scales Mie Scattering Image

Strategies

AMR to exploit varying spatial resolution requirements

Temporal discretization strategies

Fully explicit
Fully implicit
Exploit the multiscale character of the problem
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Low Mach number formulation

Exploit separation of scales between fluid motion and acoustic
wave propagation

Momentum
∂ρU
∂t

+∇ · (ρUU) = −∇π +∇ · τ

Species
∂(ρYm)

∂t
+∇ · (ρUYm) = ∇ · (ρDm∇Ym) + ω̇m

Mass
∂ρ

∂t
+∇ · (ρU) = 0

Energy
∂ρh
∂t

+∇ ·
(
ρh~U

)
= ∇ · (λ∇T ) +

∑
m

∇ · (ρhmDm∇Ym)

Equation of state p0 = ρRT
∑

m
Ym
Wm

constrains the evolution

Differentiation of EOS expresses constraint in the form

∇ · U = S

where S is a function of the thermodynamic state of the system
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Generalized projection formulation

Fractional step scheme

Advance velocity and thermodynamic variables
Specialized advection algorithms
Diffusion
Stiff reactions

Project solution back onto constraint – variable coefficient elliptic PDE, multigrid

Stiff kinetics relative to fluid dynamical time scales

∂(ρYm)

∂t
+∇ · (ρUYm) = ∇ · (ρDm∇Ym) + ω̇m

∂(ρh)

∂t
+∇ · (ρUh) = ∇ · (λ∇T ) +

∑
m
∇ · (ρhmDm∇Ym)

Operator split approach

Chemistry⇒ ∆t/2

Advection – Diffusion⇒ ∆t

Chemistry⇒ ∆t/2
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Block-structured AMR

AMR – exploit varying resolution require-
ments in space and time

Block-structured hierarchical grids

Amortize irregular work

Each grid patch (2D or 3D)

Logically rectangular, structured

Refined in space and (possibly) time
by evenly dividing coarse grid cells

Dynamically created/destroyed

2D adaptive grid hierarchy

How do we integrate PDE’s on this type of grid structure

How do we implement those algorithms

How do we parallelize implementations

Consider a simple case – Hyperbolic Conservation Laws
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AMR for conservation laws

Conservative explicit finite volume scheme

Un+1
i,j = Un

i,j −
∆t
∆x

(Fi+1/2,j − Fi−1/2,j )

−
∆t
∆y

(Gi,j+1/2
− Gi,j−1/2

)

Recursive integration with subcycling in time

Integrate each grid patch separately

Fill ghost cells for next finer level,
interpolating in space and time from
coarser grid where needed

Integrate fine grid for r time steps

Fine-Fine

Physical BC

Coarse-Fine

Berger and Colella, JCP 1989

Bell, Berger, Saltzman,
Welcome, JCP 1994

Coarse and fine grids are at the same time but the overall process isn’t conservative.

At c-f edges flux used on the coarse grid and average of fine grid fluxes don’t agree

Reflux to make overall integration conservative – update coarse grid with difference in
coarse and fine fluxes

Let’s look at this process in more detail
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Hyperbolic–1d

Consider Ut + Fx = 0 discretized with an explicit finite
difference scheme:

Un+1
i − Un

i
∆t

=
F

n+ 1
2

i−1/2 − F
n+ 1

2
i+1/2

∆x

In order to advance the composite solution we must specify
how to compute the fluxes:

∆t f

∆xf ∆xc

× × × × × ×
j−1 j J J+1

Away from coarse/fine interface the coarse grid sees the
average of fine grid values onto the coarse grid
Fine grid uses interpolated coarse grid data
The fine flux is used at the coarse/fine interface
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Hyperbolic–composite
One can advance the coarse grid

∆t f

◦ × ×
(J−1) J J+1

then advance the fine grid

∆t f

× × × × ◦ ◦ ◦
j−1 j (j+1)

using “ghost cell data” at the fine level interpolated from the coarse
grid data.

This results in a flux mismatch at the coarse/fine interface, which
creates an error in Un+1

J . The error can be corrected by refluxing, i.e.
setting

∆xcUn+1
J := ∆xcUn+1

J −∆t f F c
J−1/2 + ∆t f F f

j+1/2

Before the next step average fine grid solution onto coarse grid.
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Hyperbolic–subcycling
To subcycle in time we advance the coarse grid with ∆tc

∆tc

◦ × ×
(J−1) J J+1

and advance the fine grid multiple times with ∆t f .

∆t f

∆t f

∆t f

∆t f

× × × × ◦ ◦ ◦
j−1 j (j+1)

The refluxing correction now
must be summed over the fine
grid time steps:

∆xcUn+1
J := ∆xcUn+1

J

−∆tcF c
J−1/2 +

∑
∆t f F f

j+1/2
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AMR Discretization Design

AMR discretization – solve on different levels separately
Integrate on coarse grid
Use coarse grid to supply Dirichlet data for fine grid at
coarse / fine boundary
Synchronize to correct errors that arise from advancing
grids at different levels separately

Errors take the form of flux mismatches at the coarse/fine
interface

Synchronization:
Define what is meant by the solution on the grid hierarchy
Identify the errors that result from solving the equations on
each level of the hierarchy “independently” (motivated by
subcycling in time)
Solve correction equation(s) to “fix” the solution
For subcycling, average the correction in time
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Elliptic AMR

Look at 1d (degnerate) example

−φxx = ρ

where ρ is a discrete approximation to the
derivative of a δ function at the center of
the domain

ρf
J = −α ρf

J+1 = α

but ρc ≡ 0

Define a composite discretization

Lc−fφc−f = ρc−f

and solve

Apply design principles above

Solve Lc φ̄c = ρc

Solve Lf φ̄f = ρf using Dirichlet
boundary conditions at c − f
interface

Form composite φ̄c−f
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Elliptic AMR – cont’d

How do we correct the solution

If we define e = φ− φ̄ then

Lc−f e = R

where R = 0 except at c − f boundary
where the it is proportional to the jump in
φx .

Solve for e and form φ = φ̄+ e

e exactly corrects the mismatch

Residual is localized to the c − f
boundary but correction is global

The error equation is a discrete
layer potential problem

e is a discrete harmonic function
on the fine grid→ solve only on
coarse grid and interpolate
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Parabolic discretization

Consider ut + fx = εuxx and the semi-implicit time-advance algorithm:

un+1
i − un

i

∆t
+

f
n+ 1

2
i+1/2 − f

n+ 1
2

i−1/2

∆x
=
ε

2

(
(∆hun+1)i + (∆hun)i

)
The difference en+1 between the exact composite solution un+1 and the solution un+1

found by advancing each level separately satisfies

(I −
ε∆tc

2
∆h) en+1 =

∆tc

∆xc
(δf + δD)

∆tc δf = −∆tc f J−1/2 +
∑

∆t f fj+1/2

∆tc δD =
ε∆tc

2
(uc,n

x,J−1/2 + uc,n+1
x,J−1/2)

−
∑ ε∆t f

2
(uc−f ,n

x + uc−f ,n+1
x )
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Multiphysics AMR
Basic integration paradigm works for hyperbolic, elliptic and parabolic PDEs

Synchronization equations match the structure of the process being corrected.

Recall combustion algorithm – algorithm components

Semi-implicit treatment of velocity, enthalpy and species
Explicit Advection
Crank Nicolson diffusion

Stiff ODEs
Elliptic projections

AMR for low Mach number can be constructed by carefully combining the above
elements

Key issue is keeping tracking of different aspects of synchronization and performing
them in the right order

Same set of tools can be used for a variety of applications
Incompressible flow
Self-gravitational compressible flows
Low Mach number astrophysics
Porous media flow
. . .

How can we implement this to be able to reuse the pieces
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Implementation

One wants to implement these types of algorithms within a software
framework that supports the development of block-structured AMR
algorithms

Represent dynamically changing hierarchical solution

Manage error estimation and regridding operations

Orchestrate multistep algorithms and synchronization

Support for iterative methods for implicit algorithms

There are a number of frameworks that support implementation of these
types of algorithms

We use BoxLib

Data structures

Operations on those data structures

Model for parallelization
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Data Structures

Index space
Box : a rectangular region in index space
BoxArray : a union of Boxes at a level

Real data at a level
FAB: FORTRAN-compatible data on a single box

Data on a patch
These patches are quite large – thousands of points

MultiFAB: FORTRAN-compatible data on a union of
rectangles

Data at a level
FluxRegister: FORTRAN-compatible data on the border of
a union of rectangles

Data for synchronization
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Data Operations

Index space Operations:

Create and manage box topology

Identify neighbors on same level

Identify which coarse grids underlie a given fine patch

Single-level operations

Fill boundary data from same-level grids

Fill data using physical boundary conditions

Integrate data at a level
Patch by patch for explicit algorithms
Solve over all patches at a level for implicit algorithms

Multi-level operations

Interpolate : coarse→ fine

Average : fine→ coarse

Fill boundary data from coarser grids

Synchronization
Local corrections for explicit algorithms
Implicit synchronization systems for implicit algorithms
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Parallel Data Distribution

AMR hierarchy represented by a BoxArray and MultiFAB at
each level

Each processor contains the full BoxArray.
Simplifies data-communications: send-and-forget

Data itself is distributed among processors; different
resolutions are distributed independently, separately
load-balanced.
Owner computes rule on FAB data.
Issues for efficient implementation

Dynamic load balancing
Efficient manipulation of metadata
Optimizing communication patterns
Fast linear solvers
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Metadata, communications and solvers

Index space operations are naively O(n2)

Each box needs to know its neighbors

Bin BoxArray spatially

Limit searches to boxes in neighboring bins

Communication

Every MultiFAB with the same BoxArray has the same distribution

Each processor caches list of its grids’ nearest neighbors and their processors

Each processor caches list of coarse grids and their processors used to supply
boundary conditions

Messages are ganged: no more than one message is ever exchanged between
processors in an operation

Solvers

Semi-structured solvers

Current approaches based on multigrid
As problem is coarsened, floating point to communication gets small
Communication avoiding algorithms
Consolidate data at coarse levels of multigrid
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Multi-core architectures

Pure MPI approach

Each grid is assigned to a core

Cores communicate using MPI

Bell, LBNL Parallel AMR



Hybrid model

Each grid is assigned to a node

OpenMP used to spawn threads so that cores within a node
work on the grids simultaneously

Nodes communicate using MPI
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MPI versus Hybrid model

Advantages of hybrid model
Fewer MPI processes lead to reduced communication time
Less memory for storing ghost cell information
Reduced work from larger grids – surface to volume effect

Disadvantages of hybrid model
Spawning threads is expensive – makes performance
worse for small core counts
Can’t hide parallelization from physics modules

With hybrid model, we have been able to scale multiphysics
applications to 100K processors
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Hydrogen combustion

DOE’s Office of Fossil Energy is interested in developing fuel-flexible
turbines that can operate with hydrogen-rich fuels

1 cm

(b)(a)

PLIF domain

5 cm

Detailed simulation is needed to understand the structure of these
flames

OH PLIF shows gaps in the flame

Standard flame models are not applicable

Standard experimental diagnostics hard to interpret
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Low swirl burner simulation

Simulation of lean-premixed hydrogen
flame stabilized on a low-swirl burner

Detailed chemistry and transport

No explicit models for turbulence
or turbulence / chemistry
interaction

25 cm x 25 cm x 25 cm domain

Methodology enables simulation
at effective resolution of 20483

Simulation captures cellular structure of
thermodiffusively unstable lean hydro-
gen flames

Quantify enhanced burning from
local enrichment of the fuel
resulting for high H2 diffusion

Provide insight into the analysis
of experimental diagnostics

(c) -ωH2

(a)

(b) H2

(d) OH (e) T

25 cm

(b) (d)

(c) (d)

FOV1

FOV2

(a)

Experiment vs. simulation
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Hydrogen low swirl burner

Animation of OH (flame marker) and vorticity
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Convection / diffusion in CO2 sequestration

CO2 is injected into the subsur-
face and forms a liquid layer on
top of resident brine.

However, when CO2 dissolves
into the brine it increases the
density, inducing gravity driven
convection

This effect can potentially in-
crease the storage capacity of
the formation

periodic b.c.

XCO2
= 0

XCO2
= 0.0493

W

H

g
no flow
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Simplified model

Model the system as a two-component incompressible flow with
diffusive injection of CO2 at the top of the formation. Look at
dynamics at small scales.

∂φρXα
∂t

+∇ · (ρXαvT ) = ∇ · φτDρ∇Xα, α = 1,2

Augemented with an equation of state

ρ

(
X1

ρ1
+

X2

ρ2

)
= 1

For this system diffusion is important and effects the
divergence of the total velocity

∇ · vT =
2∑

α=1

1
ρα
∇ · φρτD∇Xα
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3D simulation

3.8 x 108 s

3.0 x 107 s

4.8 x 107 s
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Summary and conclusions

Multiphysics applications characterized by a wide range of
length and time scales

Approach to developing simulation methodology
Analysis of relationship of temporal scales
Mathematical formulation that exploits those relationships
Numerics for each process that reflects character of the
process
Block-structured AMR for spatially varying resolution
requirements

How to integrate PDEs in AMR grids
Framework for implementation of AMR algorithms
Structured grid AMR provides natural model for hierarchical
parallelism
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